

• LT type oil cooler having a bigger cooling capacity with less water.

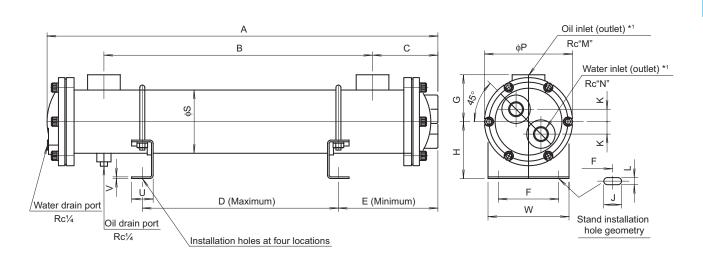
Nomenclature

LT	***	A	_	10
1	2	3		4

1 Model No.

LT: oil cooler

2 Capacity code


0403 1515 0504 2020 0707 3030 1010 5060

3 Acceptable water

A: for fresh water, industrial water (Sea water is unusable.)

4 Design No. (The design No. is subject to change)

External dimension diagram

Note: *1 Refer to "Handling" on Page L-55 for details on a use of inlet or outlet port.

Model code	А	В	С	D	Е	F	G	Н	K	J×L	М	N	Р	S	U	V	W	Heat transfer area m²	Max. oil flow rate L/min/min	Mass kg
LT0403	364	200	87	140	115	60	57	75	14.5	20 × 10	3/4	1/2	108	76.3	30	2.3	105	0.3	40	7
LT0504	504	340	87	280	115	60	57	75	14.5	20 × 10	3/4	1/2	108	76.3	30	2.3	105	0.4	50	9
LT0707	614	440	92	340	140	85	66	80	17.5	25 × 10	1	1/2	124	89.1	30	2.3	114	0.7	75	13
LT1010	814	640	92	540	140	85	66	80	17.5	25 × 10	1	1/2	124	89.1	30	2.3	114	1.0	100	16
LT1515	614	430	97	330	145	100	82	100	21	25 × 12	11/4	3/4	144	114.3	35	2.3	144	1.4	150	20
LT2020	814	630	97	530	145	100	82	100	21	25 × 12	11/4	3/4	144	114.3	35	2.3	144	2.0	200	24
LT3030	829	590	127	490	175	130	95	110	25	32 × 12	1½	1	168	139.8	40	3.2	174	3.4	300	33
LT5060	1099	830	142	710	200	150	111	125	29	32 × 12	2	1	200	165.2	40	3.2	200	6.3	500	56

https://www.daikinpmc.com/en/

For latest information, PDF catalogs and operation manuals

Handling

PH

M alkalinity

Total hardness

Chlorine ion

Sulfate ion

Total iron

Sulfur ion

Silica

Ammonium ion

• Fluids or water that will corrode the cooling piping (Cu) or seawater must not be used.

Use cooling water that satisfies the water quality standard.

The quality and flow rate of the cooling water must be maintained at a standard level to prolong the life of the oil cooler. The oil cooler is made of copper pipes for better heat exchanger effectiveness and better resistance to corrosion. However, using water of poor quality may cause corrosion that shortens the service life, or generate scales that deteriorate the cooling capacity.

To secure a prolonged oil cooler service life, observe the water quality standards given in the table below.

Table-1 Water quality standards for cooling water

CaCO₃ (PPM)

CaCO₃ (PPM)

CQ-

 SO_4^2

Fe S²⁻

 NH_4^{\dagger}

SiO₂

(25°C)

(PPM)

(PPM)

(PPM)

(PPM)

(PPM)

(PPM)

Item

Electrical conductivity at 25°C (μS/cm)

✓

Table-2 Water quality standards for makeup water

Iter	Standard value		
PH		(25°C)	6.0 to 8.0
Electrical conductivity	at 25°C	(μ S/cm)	200 maximum
M alkalinity	CaCO:	3 (PPM)	50 maximum
Total hardness	CaCO:	3 (PPM)	50 maximum
Chlorine ion	Cl-	(PPM)	50 maximum
Sulfate ion	SO ₄ ²⁻	(PPM)	50 maximum
Total iron	Fe	(PPM)	0.3 maximum
Sulfur ion	S ²⁻	(PPM)	Not detectable
Ammonium ion	$NH_4^{\scriptscriptstyle +}$	(PPM)	Not detectable
Silica	SiO ₂	(PPM)	30 maximum

Note: 1. Either in a circulation type or one-way type system, "cooling water" refers to the water that passes through the oil cooler.

Not detectable

Not detectable

50 maximum

- The unit cannot be used for cooling chemicals or food products.
- The unit cannot be used when the temperature difference at the oil inlet and water inlet is 80°C or greater.
- The maximum operating pressure is 1 MPa {10 kgf/cm²} in the oil piping and 0.7 MPa {7 kgf/cm²} in the water piping.

• Be sure to keep the water flow rate within the permissible ranges given in the table below.

An excessive water flow rate inside the copper tubes may cause them to corrode, and an insufficient water flow rate results in deterioration of thermal efficiency and cooling performance with a tendency for scale generation.

The appropriate range for the flow velocity is from 0.5 to 2.0 m/s and the minimum and maximum water flow rates at an appropriate velocity for an LT oil cooler are given in the table below.

Table-3 Water flow rate standards for oil coolers

Water flow rate Model	LT0403	LT0504	LT0707	LT1010	LT1515	LT2020	LT3030	LT5060
Minimum water flow rate L/min (velocity 0.5 m/s)	8	10	12	15	20	25	35	60
Maximum water flow rate L/min (velocity 2.0 m/s)	30	30	43	43	87	87	150	200

- Clean the water pipes (inner face of heat exchanger pipes) once every six months to prevent corrosion of the heat exchanger pipes and deterioration of cooling capacity.
- There is no restriction on selection of the inlet and outlet side oil ports. However, for water inlet/outlet ports it is the common practice to lead water in at the lower port to avoid residual air inside the unit.
- The cooler can be used in a vertical orientation, but in that case, take care about piping design and install an air bleeder to avoid residual air inside the unit.

^{2.} These standards conform to the water quality standard for cooling towers stipulated by The Japan Refrigeration and Air Conditioning Industry Association.

Example of selection

■Amount of exchanged heat at the maximum water flow rate

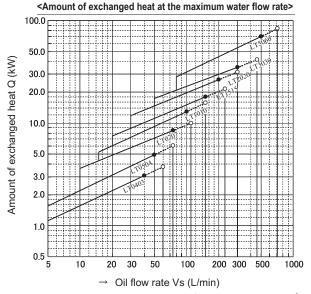
At the maximum water flow rate

Model No.	LT0403	LT0504	LT0707	LT1010	LT1515	LT2020	LT3030	LT5060
Water flow rate L/min	30	30	43	43	87	87	150	200

Conditions

Oil inlet temperature	Water inlet temperature	Oil usable
55 °C	28 °C	Equivalent to ISO VG32

The selection graph to the right shows the criteria for selecting oil coolers when using oil of standard viscosity (equivalent to ISO VG32) with the maximum water flow rate.


Example of selection

Assuming the case where 27 kW of heat is to be removed from oil equivalent to ISO VG32 at an oil flow rate of 200 L/min under the conditions described above, LT2020 is selected from the graph to the right at the maximum water flow rate (87 L/min for LT2020).

Oil chilled temperature

= 36.9 *1 × Amount of exchanged heat Q [kW] \div Oil flow rate Vs [L/min] If 27 kW of heat is removed from oil flowing at 200 L/min in the example of selection above, the oil cooling temperature = 36.9 × 27 kW \div 200 L/min \approx 5.0°C, i.e. oil at 55°C will be cooled to 50°C and flow out from the cooler.

Note: *1 The value of 36.9 indicated above can be obtained from the following equation. 36.9 = 60 minutes / ([Weight volume ratio of oil 0.865 kg/L] \times [Specific heat of oil 1.88 kJ/(kg°C)])

Note: Solid line:

Dashed line:

"●" mark:

"O" mark:

Pressure loss at oil side \angle Ps \leq 0.1 MPa {1 kgf/cm²} 0.1 MPa {1 kgf/cm²} < Pressure loss at oil side \angle Ps \leq 0.2 MPa {2 kgf/cm²} Point with the pressure loss at oil side of 0.1 MPa {1 kgf/cm²} Point with the pressure loss at the oil side of 0.2 MPa {2 kgf/cm²}

Amount of exchanged heat at the minimum water flow rate when using high viscosity oil

At the minimum water flow rate

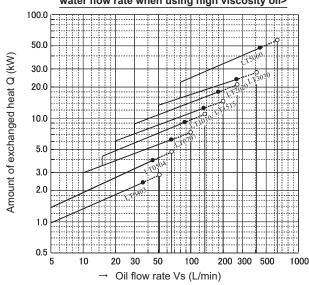
Model No.	LT0403	LT0504	LT0707	LT1010	LT1515	LT2020	LT3030	LT5060
Water flow rate L/min	8	10	12	15	20	25	35	60

Conditions

Oil inlet temperature	Water inlet temperature	Oil usable
55 °C	28 °C	Oil equivalent to ISO VG56

The selection graph to the right shows the criteria for selecting oil coolers when using oil with high viscosity (equivalent to ISO VG56) with the minimum water flow rate.

Example of selection


If oil equivalent to ISO VG56 is used in the example above, where 27 kW of heat is to be removed from oil at an oil flow rate of 200 L/min, LT5060 is selected from the graph to the right at the minimum water flow rate (60 L/min for LT5060).

Oil chilled temperature

In this example of selection, LT5060 which has a relatively large cooling capacity is selected, 34 kW of heat can be removed from the oil, and the oil cooling temperature = 36.9×34 kW $\div 200$ L/min ≈ 6.3 °C, i.e. oil at 55°C will be cooled to 48.7°C and flow out from the cooler.

The oil cooler is designed to cool petroleum-based hydraulic oil. For applications other than petroleum-based hydraulic oil, please consult us.

<Amount of exchanged heat at the minimum water flow rate when using high viscosity oil>

Note: Solid line:
Dashed line

o" mark:

Pressure loss at oil side $\triangle Ps \le 0.1 \text{ MPa } \{1 \text{ kgf/cm}^2\}$ 0.1 MPa $\{1 \text{ kgf/cm}^3\} < Pressure loss at oil side <math>\angle Ps \le 0.2 \text{ MPa } \{2 \text{ kgf/cm}^2\}$ Point with the pressure loss at oil side of 0.1 MPa $\{1 \text{ kgf/cm}^2\}$ Point with a pressure loss at the oil side of 0.2 MPa $\{2 \text{ kgf/cm}^2\}$